Action Recognition With Spatio–Temporal Visual Attention on Skeleton Image Sequences
نویسندگان
چکیده
منابع مشابه
Action Recognition with Visual Attention on Skeleton Images
Action recognition with 3D skeleton sequences is becoming popular due to its speed and robustness. The recently proposed Convolutional Neural Networks (CNN) based methods have shown good performance in learning spatio-temporal representations for skeleton sequences. Despite the good recognition accuracy achieved by previous CNN based methods, there exist two problems that potentially limit the ...
متن کاملAction Recognition using Visual Attention
We propose a soft attention based model for the task of action recognition in videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpses. The model essentially learns which parts in the fram...
متن کاملDynamic visual attention model in image sequences
A new computational architecture of dynamic visual attention is introduced in this paper. Our approach defines a model for the generation of an active attention focus on a dynamic scene captured from a still or moving camera. The aim is to obtain the objects that keep the observer’s attention in accordance with a set of predefined features, including color, motion and shape. The solution propos...
متن کاملAction Recognition and Video Description using Visual Attention
We propose soft attention based models for the tasks of action recognition in videos and generating natural language descriptions of videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpse...
متن کاملFacial action recognition in face profile image sequences
A robust way to discern facial gestures in images of faces, insensitive to scale, pose, and occlusion, is still the key research challenge in the automatic facial-expression analysis domain. A practical method recognized as the most promising one for addressing this problem is through a facial-gesture analysis of multiple views of the face. Yet, current systems for automatic facial-gesture anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2019
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2018.2864148